博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
图解分布式一致性协议Paxos
阅读量:6400 次
发布时间:2019-06-23

本文共 2995 字,大约阅读时间需要 9 分钟。

hot3.png

Paxos协议/算法是分布式系统中比较重要的协议,它有多重要呢?

Google Chubby的作者Mike Burrows说过这个世界上只有一种一致性算法,那就是Paxos,其它的算法都是残次品。

理解了这两个分布式协议之后(Paxos/2PC),学习其他分布式协议会变得相当容易。

学习Paxos算法有两部分:a) 算法的原理/证明;b) 算法的理解/运作。

理解这个算法的运作过程其实基本就可以用于工程实践。而且理解这个过程相对来说也容易得多。

网上我觉得讲Paxos讲的好的属于这篇:及,我这里就结合进一步阐述。一些paxos基础通过这里提到的两篇文章,以及wiki上的内容基本可以理解。

算法内容

Paxos在原作者的《Paxos Made Simple》中内容是比较精简的:

Phase 1

(a) A proposer selects a proposal number n and sends a prepare request with number n to a majority of acceptors.

(b) If an acceptor receives a prepare request with number n greater than that of any prepare request to which it has already responded, then it responds to the request with a promise not to accept any more proposals numbered less than n and with the highest-numbered pro-posal (if any) that it has accepted.

Phase 2

(a) If the proposer receives a response to its prepare requests (numbered n) from a majority of acceptors, then it sends an accept request to each of those acceptors for a proposal numbered n with a value v , where v is the value of the highest-numbered proposal among the responses, or is any value if the responses reported no proposals.

(b) If an acceptor receives an accept request for a proposal numbered n, it accepts the proposal unless it has already responded to a prepare request having a number greater than n.

借用文中的流程图可概括为:

实例及详解

Paxos中有三类角色ProposerAcceptorLearner,主要交互过程在ProposerAcceptor之间。

ProposerAcceptor之间的交互主要有4类消息通信,如下图:

这4类消息对应于paxos算法的两个阶段4个过程:

  • phase 1
    • a) proposer向网络内超过半数的acceptor发送prepare消息
    • b) acceptor正常情况下回复promise消息
  • phase 2
    • a) 在有足够多acceptor回复promise消息时,proposer发送accept消息
    • b) 正常情况下acceptor回复accepted消息

因为在整个过程中可能有其他proposer针对同一件事情发出以上请求,所以在每个过程中都会有些特殊情况处理,这也是为了达成一致性所做的事情。如果在整个过程中没有其他proposer来竞争,那么这个操作的结果就是确定无异议的。但是如果有其他proposer的话,情况就不一样了。

以为例。简单来说该例子以若干个议员提议税收,确定最终通过的法案税收比例。

以下图中基本只画出proposer与一个acceptor的交互。时间标志T2总是在T1后面。propose number简称N。

情况之一如下图:

A3在T1发出accepted给A1,然后在T2收到A5的prepare,在T3的时候A1才通知A5最终结果(税率10%)。这里会有两种情况:

  • A5发来的N5小于A1发出去的N1,那么A3直接拒绝(reject)A5
  • A5发来的N5大于A1发出去的N1,那么A3回复promise,但带上A1的(N1, 10%)

这里可以与paxos流程图对应起来,更好理解。acceptor会记录(MaxN, AcceptN, AcceptV)

A5在收到promise后,后续的流程可以顺利进行。但是发出accept时,因为收到了(AcceptN, AcceptV),所以会取最大的AcceptN对应的AcceptV,例子中也就是A1的10%作为AcceptV。如果在收到promise时没有发现有其他已记录的AcceptV,则其值可以由自己决定。

针对以上A1和A5冲突的情况,最终A1和A5都会广播接受的值为10%。

其实4个过程中对于acceptor而言,在回复promise和accepted时由于都可能因为其他proposer的介入而导致特殊处理。所以基本上看在这两个时间点收到其他proposer的请求时就可以了解整个算法了。例如在回复promise时则可能因为proposer发来的N不够大而reject:

如果在发accepted消息时,对其他更大N的proposer发出过promise,那么也会reject该proposer发出的accept,如图:

这个对应于Phase 2 b):

it accepts the proposal unless it has already responded to a prepare request having a number greater than n.

总结

Leslie Lamport没有用数学描述Paxos,但是他用英文阐述得很清晰。将Paxos的两个Phase的内容理解清楚,整个算法过程还是不复杂的。

至于Paxos中一直提到的一个全局唯一且递增的proposer number,其如何实现,引用如下:

如何产生唯一的编号呢?在《Paxos made simple》中提到的是让所有的Proposer都从不相交的数据集合中进行选择,例如系统有5个Proposer,则可为每一个Proposer分配一个标识j(0~4),则每一个proposer每次提出决议的编号可以为5*i + j(i可以用来表示提出议案的次数)

参考文档

  • paxos图解, 
  • Paxos算法详解, 
  • Paxos算法 wiki, 

转载于:https://my.oschina.net/wdyoschina/blog/698913

你可能感兴趣的文章
业界三种架构优缺点比较
查看>>
js报错:Ajax 中onreadystatechange在ie7及以上浏览器兼容吗,为什么没有反应?求大神...
查看>>
STL容器
查看>>
[Toolkit]Silverlight Toolkit 2009年10月 Release
查看>>
[WPF]WPF4.0中的字体呈现改进
查看>>
nginx-通过Nginx统计当前每个域名流量
查看>>
php中钩子(hook)的应用示例演示与下载
查看>>
pomelo--a安装时候错误总结
查看>>
二叉树与其它树
查看>>
H3 BPM前后台交互方法介绍
查看>>
Hyperledger Fabric Read-Write set semantics——读写集
查看>>
angular项目整合到.net mvc中
查看>>
Project network redundant , Vmware virtualization, Dell VRTX P2V - Part 3 (VRTX Installation)
查看>>
WSFC RODC部署模型
查看>>
(五)Docker镜像管理3之上传镜像
查看>>
elasticsearch 多次聚合
查看>>
SUSE11开启Xmanager
查看>>
Scala 语言学习之泛型(7)
查看>>
centos 7 网卡命名
查看>>
python--字典类型
查看>>